Lyman- α forest in three dimensions: Computation issues

Anže Slosar & Nishikanta Khandai (BNL)

ANL, SciDac Meeting, 10/18/2012

Introduction

- Lyman- α forest is emerging as a 3D tracer of cosmic structure
- It presents serious computational issues:
 - Strong coupling of small scales to large scales, both in data analysis and theory.
 - In data analysis: small scale systematics can affect the large scale measurements of 2-point function
 - You want to be more clever than simply averging small scales, but the number of pixels is humongous 10⁸
 - In theory: small scale fluctuations affect large scale linear bias parameters

Talk plan:

- ▶ Introduction to Lyman- α forest
- Data analysis of BOSS data
- Simulations and theoretical issues

$Ly\alpha$ forest

Neutral hydrogen absorbs light from distant quasars blue-ward of ${\rm Ly}\alpha$ emission.

Neutral hydrogen absorbs light from distant quasars blue-ward of Ly α emission.

BOSS spectra

Measuring Density fields

- Lyman-α forest pretty unique in probing redhift 2-3 universe
- Volume probed is very, very large
- Systematics very different to galaxy surveys
- At z < 2 limited by forest moving into UV
- At z > 3.5 limited by faintness and number-density of quasars

Data reduction

- Data is big: Final survey will have some 150,000 quasars: each forest is only around 500 pixels, but to understand systematics you want to analyze entire quasars, so some 1500 pixels per quasar
- Ideally want to do analysis with two-point measurements sliced as much as possible: we used 3 redhift bins, 18 separation (perpendicular distance) bins and 28 Δ log λ bins (parallel distance): 1512 measurements: barely enough to resolve BAO, ideally one would have more 5000 measurements.
- We used optimal estimator with per-quasar inverse covariance weighting: impossible to do at full resolution, so we compressed the data ×4.
- Good point: all tasks are trivially parallelizable

Quadratic estimator

We're performing calculations of the kind

$$E_i = \text{Tr}(d_1^T C_1^{-1} C_{,i} C_2^{-1} d_2)$$
 (1)

$$F_{i,j} = \frac{1}{2} \text{Tr}(C_1^{-1}C_{,i}C_2^{-1}C_{,j}^{T}).$$
 (2)

- ▶ Common sense is that if you can calculate $C^{-1}d$ you win, but here, this is actually computationally fairy trivial. Typical size ~ 500 elements.
- ► The big problem is the Fisher matrix: 1512²/2 matrix multiplications for *each quasar pair*.
- We calculate C⁻¹d and reduce pixel size after that. Survey doable at ×4 and ×3 compression, very hard lower compressions
- ▶ If measuring correlation function $C_{,i}$ is sparse.
- ► At ×1 compression, the sparse routines are considerably faster, at ×4 within 10% of dense matrices.

...and it kinda works

...and it kinda works

Improvements

- Even leaving the current technique unchanged, significant improvements can be gained from GPU utilization.
- One can fit 2000 500 x 500 matrices in 2Gb and GPUs should allow approximately 100x speed-up on such problems
- ▶ This would allow one to do BOSS with no compression.
- ▶ Better probably to improve technique: high compression for widely separated pairs, no compression for closely separated pairs.
- Maybe do a FT-like transform first?

Improvements 2

- How to go beyond independent quasars approximation?
- ► The full problem is unfeasible
- Correlations beyond closest pairs small so some perturbation scheme should work.
- ► Most such schemes still require one to multiply N_{tot} sized matrices, which is likely to be prohibitively expensive.
- A good approach would be hierarchical smoothing: do low-k modes on smoothed full field, high-k modes on independent sub-volumes approximation.

Simulations of the Ly α Forest

Table: Simulation Parameters

L_{box}	N _{part}	$m_{_{\mathrm{DM}}}$	$m_{ m gas}$	ϵ	
$(h^{-1}\mathrm{Mpc})$		$(h^{-1}M_{\odot})$	$(h^{-1}M_{\odot})$	$(h^{-1}\text{kpc})$	Z_f
400	2×4096^{3}	5.9×10^{7}	1.18×10^7	3.25	2.0

Gadget3: DM, Gas, Star

Cosmology: WMAP7

▶ Spectra created from gas properties, e.g. T, ρ , ε etc.

Figure: Kraken. University of Tennessee. 112896 cores, 147 Tb RAM

MassiveBlack : 6Tb/snapshot, 37 Snapshots, 98304 cores, \sim 19 \times 10 6 SUs.

The 1D Ly α Forest Flux Power Spectrum

The 3D Ly α Forest Flux Power Spectrum

Redshift-space Distortions of the Ly α Forest Flux Power Spectrum

The bias model

▶ On large scales we relate $\delta_F(\mathbf{k})$ and $\delta_m(\mathbf{k})$:

$$\delta_F(\mathbf{k}) = b(1 + \beta\mu^2)\delta_m(\mathbf{k}) + \epsilon \tag{3}$$

 $\epsilon \Rightarrow \mathsf{noise}.$

▶ Assume that ϵ is a gaussian random variable with variance:

$$\langle \epsilon \epsilon \rangle = P_{N} \tag{4}$$

- ▶ Assume that ϵ is scale independent.
- ▶ One can then fit for b, β and P_N by minimizing:

$$-2\log \mathcal{L} = \sum_{i=1}^{N} \frac{\left[\delta_{F}(\mathbf{k}) - b\left(1 + \beta\mu^{2}\right)\delta_{m}(\mathbf{k})\right]^{2}}{2P_{N}} - \frac{N}{2}\log P_{N}$$
 (5)

The Evolution of Bias, β *and Noise*

Performance of the Ly α Forest Simulations

Proposed Runs

- ▶ Gadget3 scales very well on upto $\sim 10^5$ cores.
- We plan on looking at the dependence of the clustering of the ${\rm Ly}\alpha$ forest on cosmological parameters.
- ▶ Running a grid of models for 4096³ size simulations is expensive.
- Assuming that the scaling holds, a simulation with $L_{box} = 50$ Mpc/h and $N_{par} = 2 \times 896^3$ will take $\sim 500,000$ SUs.
- ► This estimate is conservative since there are fewer rare peaks in $L_{box} = 50$ Mpc/h as compared to $L_{box} = 400$ Mpc/h.
- First we need to establish resolution convergence and we are doing this now
- ▶ 2013 ERCAP proposal for 10⁶ SUs for 20 cosmological models.

Code comparisons

- We plan to do code comparisons against Nyx very different (SPH/AMR)
- Will make it easier to establish convergence of both codes
- Need to think about what to compare and when to call it an agreement
- Need to build a code-to-data pipeline to see how stable data fitting is wrt to underlying simulation technology
- We have just started this effort at this very workshop...